The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0 X^2  0  0 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0  0  0 X^2 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0
 0  0 X^2  0 2X^2 X^2 2X^2 X^2 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0  0 X^2 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0
 0  0  0 X^2 2X^2 2X^2  0 2X^2 2X^2 2X^2 X^2  0 2X^2  0 2X^2 X^2 X^2  0 X^2 X^2 X^2 2X^2 X^2  0 X^2 2X^2  0  0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2  0  0  0 X^2 X^2 2X^2 2X^2 X^2  0  0  0 2X^2 X^2  0 2X^2  0 X^2  0

generates a code of length 55 over Z3[X]/(X^3) who�s minimum homogenous weight is 108.

Homogenous weight enumerator: w(x)=1x^0+26x^108+648x^110+52x^111+2x^165

The gray image is a linear code over GF(3) with n=495, k=6 and d=324.
This code was found by Heurico 1.16 in 0.0502 seconds.